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A random Lorentz model 
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AbslraeL We investigate the propenies of ;I model in which a particle moves on a 
square lattice wi!h a fraction of the sites mlndumly occupied ty stationary scalterers. 
Between WO successive collisions with the ~ e i i l t r r c ~  the particle performs random walk. 
The velocity autocorrelation function, measured by the computer moment propagation 
method, has an algebraic long-time mil allhough for some model parameters it  decays 
ve~y slowly at  large time. We discus the dilIusion process in such a model dculating 
the dlZ:sins ceeEcic~! is !he Ba!:rmrnn and e!?ec:ive zedice app:cxina:iaar. !! is 
shown that correlated collisions play an imponint d e  in the description or dilfurion for 
an intermediate density of scatteren. 

1. Intmduction 

In Lorentz gases non-interacting particles move through randomly placed scatterers. 
Recent investigations [ 1 4  have shown that the lattice version of the Lorentz gas is an 
interesting example of a lattice gas for which the Boltzmann equation is inadequate. 
Fbr example the diffusion coefficient, in models admitting reflection collisions, may 
deviate by more than 100% from the Boltzmann prediction [4]. This deviation is 

not taken into account in the Boltzmann approximdtion. Moreover, the long-time 
behaviour of the velocity autocorrelation function (VAF) is characterized by algebraic 
decay, whereas the Boltzmann equation predicts exponential decay. Frenkel with his 
collaborators (5, 6] has developed a very accufntc computer simulation technique, 
called moment propagation, which allows direct mcasurement of the VAF in cellular 
automata lattice gases with stochastic collision rules. Their measuremenu of the VAF 
for the ZD lattice Lorentz gases show the L-' algchroic tail. In the square lattice they 
observed a fast [(-l)'] mcillation of the VAP. 

In a previous paper [7] we mnsidcred a h r c n t z  lattice gas (LLG) with particles 
interacting through elastic collisions. The wllisions hctween particles led to unusual 
behaviour in the diffusion coefficient as a function of particle density; it exhibited a 
maximum in the low particle density range. The incrcase in the diffusion coelficient 
with particle density can be understood as a de-correlation of the particle-scatterer 
collision by elastic particle-particle collisions. Moreover, we observed that the dif- 
ference between the computer simulation diffusion coelficient and the Boltzmann 
prediction decreased for the intermediate particlc density. In this paper we are inter- 
ested in the problem of diffusion in the LLG in which the interacting particles have 
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a high particle density. We want to h o w  whether the correlated collisions are also 
important in the description of diffusion in a dense lattice gas. 

In order to study diffusion in the high particle density limit we will introduce a 
simple one-particle model, which will be called a random Lorentz model (RLM). It 
will be shown that the RLM can also describe a random walk, a correlated random 
walk and the site percolation problem. 

Applying the moment-propagation computer method to the RLM we shall discuss 
the properties of the VAE It will be shown that the RLM exhibits a new type of 
long-time behaviour in the VAF. 

Comparing the diffusion coefficient measured in the computer simulation with the 
Boltunann prediction we will discuss the influence of the randomness of scatterers on 
diffusion in the RLM. Ernst and van Velzen [l] have shown that the diffusion coefficient 
of a u G  calculated in the effective medium approximation (EMA) is in excellent 
agreement with the computer simulation result for the whole scatterer density range. 
In this paper we shall also calculate the diffusion coclkient of the RLM in the EMA 
and by comparison with computer simulation results, the limitation of the EMA will 
be discussed. 

J Kortus and C Olekg 

2. The model 

In the LIxi with interaction a particle collides both with scatterers and other particles 
[7l. Diffusion of a tagged particle in such a modcl can be reduced to a strictly 
one-particle problem in two limiting cases: 

(i) the low particle density limit where the problem is equivalent to diffusion in a 
ballistic U G ;  and 

(ii) the high particle density limit where the problem corresponds to diffusion in 
the RLM. 
Case (i) has been widely investigated [l, 3, 41 and sccms to be well understood. The 
latter we shall introduce and discuss in this paper. 

A RLM consists of a lattice with a fraction of sites, c, randomly occupied by 
stationary scatterers. Particles move from a site to a neighbouring one in a unit time 
step. If the particle is on a site without a scatterer, i t  will go to one of the nearest 
neighbours with equal probability. In other words the particle performs a random 
walk On a site occupied by a scatterer, the particle is scattered as in a stochastic 
Lorentz gas [l, 41. This means that change of direction of motion at a site with 
a Scatterer is described by a transition matrix. I n  this paper we consider a RLM 
on a square lattice. The transition rates are the following: c( is the probability of 
transmission, p is the probability of reflection and y is the probability of deflection in 
an orthogonal direction. 'hey satisfy the normalization condition: a+P+?y = 1. It 
is worth emphasizing the difference between the LLG and the RLM. In both models a 
particle is scattered upon collision with scatterer. In  thc LLG between two successive 
collisions the particle moves freely along a straight line connecting two scatterers 
whereas in the RLM the particle performs a random walk in the time between two 
successive collisions with scatterers. 

There are four special (limiting) problems which can also be described by the 
RLM: 

(i) random walk on uniform lattice ( c  = 0 or (I = 0 = y = 0.25); 
(ii) correlated random walk ( c  = 1 ) ;  



A random Lorene nicdel 1095 

(iii) site percolation problem ( p  = 1 ,  a = y = 0); and 
(iv) U G  with isotropic Scatterers with density C' = 1 - c (a = 1 ,  p = y = 0). 

The site percolation problem in the RLM will be discussed in more detail in sections 4 
and 5. 

3. The Chapman-Kolmogomv equation 

In this section we derive the equation of the motion, the Chapman-Kolmogorov equa- 
tion, for the RLM. Let p (  v ,  i, t )  denote the probability that, in a given mnfiguration 
of scatterers, the particle at time t is at site T with velocity e;. Assuming the lattice 
mnstant and time step to be equal to one, the velocity of the particle is one of the 
four lattice vectors 

ei = (cos(ni/2),sin(ni/2)) i = 0 , 1 , 2 , 3 .  (3.1) 

The Chapman-Kolmogorov (CK) equation can be witten in the following way 

p ( r  + ei, i , t  + 1) = ( 1  - cv)+ x p ( ~ , j , t )  
j 

+ c T { a p ( r , i , t )  + Y P ( T , ~ @  1 , t )  + / j p ( i * , i C $ 2 , 1 )  + y p ( r , i @ 3 , t ) )  

(3.2) 

where @ denotes addition mod 4. The first term on the right-hand side dcscribes the 
contribution from the random walk (site without scatterer) and the last term takes 
into account the collision of the particle with a scatterer. 

The fluctuation in the Scatterer density is described by introducing independent 
random variables: 

1 with probability c 

= [ 0 with probability 1 - c. 
(3.3) 

It is convenient to rewrite the cK equation (3.2) in matrix form. Introducing 4N 
vectors and 4N x 4 N  matrices and block indices pi), the  CK equation can be 
written 

p ( t +  1 )  = S - ' [ B +  C T ] p ( l )  (3.4) 

where S is the translation operator 

s7.:,qj = 6,+,,,,6:, (3.5) 

B is the random walk matrix 

B .  rljqJ . = 1 6  4 r 9  (3.6) 

C is the matrix of scatterer density fluctuation 

c m , q j  . . = c,s,,,6;j (3.7) 
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and T is the particle-scatterer collision matrix 

with 
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T "841 . . = 6p ,qUi j  (3.8) 

U -  I J  = (a - + ) 6 ; j  + (7 - +)(6i,jei + s; , jBs)  + ( 0 -  +)6i,je*. (3.9) 
It is worth noting that in the CK equation for the LLG [l] the matrix B is replaced 
by a unit matrix and the collision operator T has slightly different components. 

We are interested in finding the VAF and the diffusion coefficient. The VAF is 
defined as 

where v, ( t )  denotes the =-component of the particle velocity a t  time t and (. . .) 
means the average over all possible paths and different configurations of scatterers. 

The mean square displacement of a particle at time t can he expressed by the 
VAF in the following way [SI 

@ ( t )  = ( % ( O ) % ( t ) )  (3.10) 

The diffusion coefficient 

(3.11) 

can be calculated from the Green-Kubo formula [ I ]  for the two-dimensional case, 
i.e. 

(3.13) 

The VAF can be expressed hy the conditional probability P ( t )  which is defined by 
rewriting equation (4) in the form 

P ( t )  = P(t )P(O)  
= [ S - l ( B  + CT)] ' - 'S - 'p (O)  (3.14) 

Assuming ...... a steady state as the initial distrihution p ( r > i > t  = 0) = (4N)-' ,  the 
with initial condition P ( 0 )  = 1. 

VAF can he written as 

(3.15) 

where (. . .) denotes the average over random varidhlcs c,. and eiz, the z:-component 
of e;. 

of the ( P ( t ) ) ,  
It is convenient to introduce the propagator IT [ I ]  which is the Laplace transform 

m vZ)  = C(i + z ) - l ( ~ ( t ) )  
t = 1  

= ([(l + 2)s - I3 - CT]- l ) .  (3.16) 

The diffusion coelficient is related to r ( 0 )  through 

D = a c c e i Z . j J , i , o j ( 0 )  - f (3.17) 
7 i,j 

where we have used the translational invariance or I' 
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4. Velocity autocorrelation function 

In this section we discuss the properties of the VM using the results of computer 
simulation. lk moment-propagation (MP) method allows a direct and accurate mea- 
surement of the VAF and is a million times more efficient than conventional simulation 
1.51. The basic idea of the MP method is the following: Let us consider a particle at 
time 1 = 0 at site T on the square lattice with a given configuration of scatterers. 
in the next time step the particie can be in any oi iour neighbouring sites. in the 
MP method we take into account all possibilities by calculating the probability for 
each path. Hence instead of tracing the individual particles we propagate the site 
probability p ( r ,  i,t) according to the dynamics of the model. In order to measure the 
VAF directly the site probability is weighted with the initial velocity v,(O). Denoting 
the 'weighted' site probability by M ( r ,  i, t),  the MP method can be described by the 
following equations: 

M ( r , i ,  t + 1)  = c Wij(T)M(T - e j , j ,  1 )  (4.1) 

with initial wlue 

M (  T ,  i, 0) = e, ,  . (4.2) 

The transition matrix W ( T )  depends on the configuration of scatterers. It  has tran- 
sition rates equal to on sites without scatterers and a,@,? are the elements of W 
on sites occupied by scatterers. The steady state is chosen as the initial one, thus the 
VAF for a given configuration of scatterers can be calculated from 

(4.3) 

Averaging over different configurations of scattercrs wc get the VAF for the RLM. 
Let us first discuss the behaviour of the VAF in a simple case. It is obvious 

that there is no correlation between input and output velocities on a site without a 
scatterer. The same situation can happen on a site with a scatterer provided that 
the probability of transmission is equal to the probability of reflection, (I = p. It 
means that the probability that a particle will have unchanged velocity is the same as 
the probability that the particle velocity changes sign 3s a result of a collision with a 
scatterer. Hence their contributions to the VAF wnccl out. The value of y has no 
meaning because it describes scattering with a post-collisional velocity perpendicular 
to the pre-collisional one and it follows that the product of their z-components is 
equal to zero. Using these simple arguments we lind that the VAF for the RLM with 
a = p is of the form 

(4.4) 

For models with a f p we performed a computer simulation using the MP 
technique on a square lattice with 255 x 255 sites. The reSultS were usually averaged 
over M configurations of scatterers. We found that thc behaviour of the VAF depends 
on the sign of (a - p). The case f l  > a iS representcd in figure 1 by the curve with 
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full squares. The VAF is positive for even time steps and negative for odd. Such cdd- 
even cscillations were observed in the VAF for the LLG on the square lattice [6] and 
in the VAF for a myopic random walk on a percolation cluster on the square lattice 
191. It has been argued that this oscillation appears due to a staggered invariant (61. 
The algebraic decay of the upper and lower envelopes is well developed. Similarly as 
in the LLG there is no unique asymptote of the V U  of the RLM on the square lattice, 
ie. the exponents of the upper and the lower envelope are different. In order to 
find the exponent, a simulation should he  performed on a triangular lattice where the 
staggered invariant does not exist. The second curve in figure 1 (with open circles) 
represents the VAF for the case a > p. The algebraic tail and odd-even oscillation 
are also observed. However, there is a significant difference with respect to the case 
represented by the f is t  curve. In the odd+ven ascillation the VAF does not change 
sign but there is a visible difference between the magnitudes of the odd and even time 
steps. For t < 8 the VAF is positive, at t = 8 it changes sign and remains negative 
for large 1. The moment when VAF changes sign depends on model parameters. 

J f i rms  and C Ole@ 
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F i y m  1. Log-log plot of the absolute value of the YAP as a funclion Of time. 
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scatterers play the role of reflectors. The VAF has odd%ven oscillations with positive 
(negative) value for even (odd) times 1 .  However the VAF decays so slowly at large 
time that it is very difficult to confirm this by computer simulation. The decrease 
in the VAF at large time is far below statistical accuracy. For example, for c = 0.2 
the decrease in the VAF 6(500) - 6(1000) = 6 . 3  x whereas the standard 
deviation of the VAF at large time is about 2.4 x We observed that in all the 
cases presented in figure 2 the absolute value of the VAF at large time ( t  = 1000) is 
nearly equal to 6(2) = ic* with an accuracy below 1%. 

The case 0 = 1 in the RLM corresponds to a site percolation problem with 
percolation threshold c = 0.40725 [lo]. In our model, a particle can visit each 
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0.1 
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0.01 

0.001 

C= 0.4 0.1 

Figum 7.. The Same as in figure 1 for B = 1 and for Several values of the scatterer 
density c. 

site of the lattice independently of the density of scatterers c. However if a particle 
enters a site with a scatterer then in the next time step it must return to the previously 
visited site. As is seen from figure 2, the correlations persist both below and above 
the percolation threshold. The behaviour of the VN; for a myopic random walk on 
percolation cluster is different. It decays as t-0.69 for large time [9]. 

5. The diffusion 

As we have shown in section 3, the diffusion coellicient can be obtained from the 
propagator r. However calculating the propagator is very difficult problem. We 
solve this problem approximately, similarly to the case of the LLG [l], using the 
Boltzmann approximation and the effective medium approximation. The propaga- 
tor, equation (3.16), is very similar to that for the 1.1.~ hence we omit the details 
concerning these approximations. 

5.1. The BoiQmann approximation 

In the BOkzmaM approximation (BA) only uncorrelated collisions are taken into 
account. This means that the random variables cI in equation (3.2) are replaced by 
their average values (cr) = c and it follows that the matrix C is equal to cl. Using 
the properties of cubic matrices [I] the propagator r can easily be calculated in the 
BA and the diffusion coefficient is 
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5.2. The efective medium approximation 

The EMA applied to the U G  gives a diffusion coeliicient which is in very good agree- 
ment with the computer simulation result for the whole range of scatterer densities 
[l]. This is due to the fact that, in the EMA, a diffcrent type of ring collision is 
taken into account [3]. The ring-type collision leads to the particle retracing part 
of its aajectory; hence, this collision is particularly important in the LLG admitting 
reflection of the particle ( p  f 0). 

J Kortus and C Olekq 

In the EMA, the propagator r, equation (3.16), is replaced by 

G ( z ) = [ ( l + z ) S -  B - c T e ( z ) ] - '  (5.2) 

The effective matrix F ( z )  has the same symmetry as the matrix T and is calculated 
from a self-consistent equation. 'Ib derive this equation the propagator r was written 
as 

r(z) = ([(I + z ) s -  B - c ~ e ( Z )  - 67'1-1) (5.3) 

and is expanded in a power series of bT = CT - cT'(z).  The condition for 
vanishing of the terms describing multiple scattering process by a single scatterer 
in this expansion (for details see Ill) leads to thc following self-consistent matrix 
equation 

F = T + TRT'-  cTeRTe 

R(Z) = / [ ( 1 +  2)eik" - B - C F ( : ) ] - '  (5.4) 
k 

where the integration is over the Brillouin mne and V is a diagonal matrix with 
elements Vj, = ej6jr. 

Solving this self-consistent equation (5.4) numeric;illy, we find the effective matrix 
F ( z )  which allows us to calculate the diffusion coelficient (3.17) with the EMA 
propagator G in (5.2). 

5.3. Computer simulation of the diffusion coeficicnt 

In a computer simulation we measured the VAF by the MP method and usiq the 
Green-Kubo formula (3.13) the diffusion coefficient was calculated with high accuracy, 
the statistical errors being well below 1%. 

The results of the BA and EMA are compared with the computer simulation 
diffusion coefficient in figure 3. Notice that the HA gives incorrect values for D 
at intermediate densities of scatterers when a # / j .  On the other hand, the BA 
predictions are exact when c i 0 or c -+ 1. The lirst limit corresponds to a random 
walk while the latter is for a correlated random walk [ I l l .  Finally it is worth noting 
that in the U G  the deviation of the BA diffusion coellicient from the simulation 
results k largest in the low scatterer density range [ I ]  whereas in our model the 
largest deviation is observed for intermediate dcnsitics (see figure 3). 

We want to emphasize that correlated collisions arc important in the description 
of diffusion in the RrM even when scatterers do not  rcllect the particle ( f l  = 0). The 
difference between the BA and computer simulation results is several percent (see 
upper curve in figure 3) and can increase up to 15% Ibr a = 1. Remember that this 
case ( p  = 0) in the UG model is characterized by il very small deviation between 
the BA and the EMA results 111. 
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Figure 3. ?he diffusion coefficient as a function of mtterer density. The full (dashed) 
cuwe is the BMA (Bolumann) prediction. Symlnls  denotes computer simulation M P  
IVSUIIS. 

Comparing the E m  diffusion coefficient, DE,, with the computer simulation 
resuit, Ds,  we see that in most cases presented in figure 3 there is good agreement 
for the whole density range. Only when the probability of reflection is close to unity, 
does the EMA predict incorrect values for the diffusion coefficient at intermediate 
density. The greatest relative deviation, A = (D, - D,,,)/D,,,, was observed 
for the density c = 0.4. As is seen in figure 4, for (j > 0.7, A has a value greater 
than 1%. The breakdown of the EMA is more apparent in the case 0 = 1 which 
describes the site percolation problem. The diffusion coefficient DEMA vanishes at 
c = 0.3333 (see figure 9, whereas the percolation threshold on the square lattice 
occurs when the density of impurities is c = 0.40725 [lo]. 

The amplitude of the VAF decreases so slowly Tor p = 1 (see figure 2) that 
we cannot use the Green-Kubo formula (equation (3.13)) to calculate the diffusion 
coefficient by the computer MP method. Hence we calculated D as function of time, 

plotted D ( t )  as function of density c. The diffusion coefficient decreases with time 
and for t = lo4 it mnishes slightly above the percolation threshold. Finally we want 
to emphasize that the case p = 1 provides an example in which the VAF does not 
decay faster than t - l ,  but due to fast odd4ven oscillations (-1)' diffusion exists. 

q!), dividing &e mea!! quare disp!aceme!!t (equa!ioa (3.11)) by 2?. !!? fig... 5 we 
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FI&!ore 5. The diffusion wefficient BS a function of xatterer density tor p = 1 (site per- 
mlarion problem). The full (dashed) NNe b lhc EMA (Bolumann) prediction. Symbols 
denoles "puler simulation mul ls  D(1) for 1 = l o 2 ,  l o 3  and 10'. 

6. Discussion 

We have investigated the RLM which corresponds to the high particle density limit of 
the LLG with interacting particles. We have shown that the VAF of the RLM decays 
algebraically at large time. In order to determine the exponent and amplitude of the 
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decay one should investigate the RLM on a triangular lattice. The square lattice is 
characterized by the additional invariant (staggered dcnsity) which leads to fast odd- 
even oscillations in the VAE We observed two types of o d d w e n  oscillations which 
could be characterized by 

(i) the difference between the magnitudes in odd and even time steps; and 
(ii) the difference between the magnitudes and the difference between signs in 

odd and even steps. 
In a special case ( p  = I), when the scatterers become reflectors, the VAF decays 

so slowly that is difficult to confirm the decay in the computer simulation. Due to the 
fact that the VAF changes sign each time step, the diffusion exists. However, these 
two facts require a more rigorous argument to be proved. The case p = 1 is of 
interest for further investigation because it provides another description of the site 
percolation problem. 

By calculating the diffision coefficient in the BA and EMA and comparing them 
with computer simulation results, we pointed out that correlated collisions play an 
important role in the description of diffusion in the KLM at intermediate densities of 
scatterers. In this range the BA predicts an incorrect value for the diffision coefficient. 
On the other hand the EMA predictions are in good agreement with the wmputer 
simulation results for p < 0.7. If p is close to 1 thc EMA breaks down at intermediate 
densities of scatterers. It is worth emphasizing the dificrence between the RLM and 
the LE. In the LLO the BA break down both a t  low and intermediate densities of 
scatterers. Moreover the EMA predicts the diffusion coclficient of the LLG correctly 
over the whole density range. In this way we have dcmonstrated that diffusion in a 
dense gas (RLM) is different from that in a rare gas (LLG). 
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